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ABSTRACT 

We established some sufficient conditions involving the oscillatory behavior of first order delay 

difference equation of the form 

Δ(𝑎𝑛𝑤𝑛) + 𝑟𝑛𝑤𝑛−𝑚 = 0, 𝑛 ∈ 𝑁. 

Examples are provided to illustrate the results. 
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INTRODUCTION 

Consider the first order delay difference equation, 

Δ(𝑎𝑛𝑤𝑛) + 𝑟𝑛𝑤𝑛−𝑚 = 0, 𝑛 ∈ 𝑁.                                    (1.1) 

where {𝑎𝑛}, {𝑟𝑛} are sequences of positive real numbers, 𝑚 is a non-negative integers.A nontrivial 

solution {𝑤𝑛} of (1.1) is  oscillatory if it is neither eventually positive nor eventually negative and non-

oscillatory otherwise. 

 

MAIN RESULTS 

Theorem 2.1.Let 𝑟𝑛 > 0 for all 𝑛 ∈ 𝑁 and 

lim
𝑛→∞

 sup ∑  𝑛
𝑠=𝑛−𝑚

𝑟𝑠

𝑎𝑠
> 1(2.1) 

Then, the difference equation (1.1) is oscillatory. 

Proof. Let 𝑤𝑛 > 0 for all 𝑛 ∈ 𝑁(𝑛1) be a solution of (1.1). 

Since 𝑟𝑛 > 0, for all 𝑛 ∈ 𝑁(𝑛1 + 𝑚), equation (1.1) implies that Δ𝑤𝑛 ≤ 0, and hence 

𝑤𝑛 is  

non-increasing on 𝑁(𝑛1 + 𝑚). 

Therefore, lim𝑛→∞  𝑤𝑛 = 𝛾 ≥ 0 exists. 

But taking the limit in (1.1) ensures that 𝛾 = 0. 

Now summing (1.1) from 𝑛2 ∈ 𝑁(𝑛1 + 𝑚), to 𝑛2 + 𝑚, we have 

𝑎(𝑛2+𝑚+1)𝑤(𝑛2+𝑚+1) − 𝑎𝑛2
𝑤𝑛2

+ ∑  
𝑛2+𝑚
𝑠=𝑛2

𝑟𝑠

𝑎𝑠
𝑤𝑠−𝑚 = 0, 

which implies that 

𝑎(𝑛2+𝑚+1)𝑤(𝑛2+𝑚+1) − 𝑎𝑛2
𝑤𝑛2

[1 − ∑  
𝑛2+𝑚
𝑠=𝑛2

 
𝑟𝑠

𝑎𝑠
] ≤ 0. 

Therefore, 

1 − ∑  
𝑛2+𝑚
𝑠=𝑛2

𝑟𝑠

𝑎𝑠
≥ 0. 

and hence 

1 ≥ lim
𝑛2→∞

 sup ∑  
𝑛2+𝑚
𝑠=𝑛2

𝑟𝑠

𝑎𝑠
. 

This contradicts (2.1) and completes the proof. 

Theorem 2.2. Suppose that 

lim
𝑛→∞

 inf
𝑟𝑛

𝑎𝑛
= 𝑑 > 0 𝑎𝑛𝑑 lim

𝑛→∞
 sup

𝑟𝑛

𝑎𝑛
> 1 − 𝑑.                                        (2.2) 

Then, the following hold 
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 (i) 𝑎𝑛+1x𝑛+1 − 𝑎𝑛x𝑛 +
𝑟𝑛

𝑎𝑛
 𝑥𝑛−𝑚 ≤ 0, 𝑛 ∈ 𝑁                                         (2.3) 

has no eventually positive solution 

(𝑖𝑖)𝑎𝑛+1𝑧𝑛+1 − 𝑎𝑛𝑧𝑛 +
𝑟𝑛

𝑎𝑛
𝑧𝑛−𝑚 ≥ 0, 𝑛 ∈ 𝑁                                         (2.4) 

has no eventually negative solution 

(iii)difference equation (1.1) is oscillatory. 

Proof.Assume that x𝑛 is an eventually positive solution of (2.3),  

that is there exists a 𝑛1𝜖𝑁(1) such that x𝑛 > 0 for all 𝑛 ∈ 𝑁(𝑛1). 

Let 𝜖 > 0,0 < 𝜖 < 𝑑 and 𝑛2 ≥ 𝑛1 be such that 
𝑟𝑛

𝑎𝑛
≥ 𝑑 − 𝜖 > 0,  for all 𝑛 ∈ 𝑁(𝑛2). 

Let 𝑛3 = max{𝑛1 + 𝑚, 𝑛2} 

so that 

𝑎𝑛x𝑛 ≥
𝑟𝑛

𝑎𝑛
x𝑛−𝑚 ≥ (𝑑 − 𝜖)x𝑛−1, for all 𝑛 ∈ 𝑁(𝑛3), 

since x𝑛 is non-increasing for all 𝑛𝜖𝑁(𝑛3). 

On the other hand, we have 

0 ≥ 𝑎𝑛+1x𝑛+1 − 𝑎𝑛x𝑛 +
𝑟𝑛

𝑎𝑛
x𝑛−𝑚

≥ 𝑎𝑛+1x𝑛+1 + 𝑎𝑛x𝑛 (
𝑟𝑛

𝑎𝑛
− 1) , for all 𝑛 ∈ 𝑁(𝑛3).

 

so that 

𝑎𝑛x𝑛 (
𝑟𝑛

𝑎𝑛
− 1 + 𝑑 − 𝜖) ≤ 0,  for all 𝑛 ∈ 𝑁(𝑛3) , 

 

Thus, it follows that 
𝑟𝑛

𝑎𝑛
≤ 1 − 𝑑 + 𝜖,  for all 𝑛 ∈ 𝑁(𝑛3), 

and hence 

lim
𝑛→∞

 sup
𝑟𝑛

𝑎𝑛
≤ 1 − 𝑑 + 𝜖 

However, since 𝜖 > 0 is arbitrary, we have 

lim
𝑛→∞

 sup
𝑟𝑛

𝑎𝑛
≤ 1 − 𝑑. 

This contradicts (2.2) and the proof of (i) is complete. 

The conclusion (ii) follows from (i) by letting 𝑤𝑛 = −𝑧𝑛 for an eventually negative solution x𝑛 of 

(2.4). 

Finally, (iii) follows from (i) and (ii). 

 

Theorem 2.3. Assume that 𝑟𝑛 > 0 for all 𝑛 ∈ 𝑁 and 

lim
𝑛→∞

 inf ∑  𝑛−1
𝑠=𝑛−𝑚

𝑟𝑠

𝑎𝑠
>

𝑚𝑚+1

(𝑚+1)𝑚+1  .                                                   (2.5) 

Then, the conclusions of Theorem (2.2) hold. 

Proof. We shall prove only (iii), whereas (i) and (ii) can be proved analogously. 

Let 𝑤𝑛 be a non-oscillatory solution of (1.1), which we can assume to be positive eventually, and since 

𝑟𝑛 > 0 this solution 𝑤𝑛 > 0 is eventually decreasing. 

Therefore, on using 𝑤𝑛 ≤ 𝑤𝑛−𝑚 in (1.1), eventually we obtain 
𝑟𝑛

𝑎𝑛
≤ 1 −

𝑤𝑛+1

𝑤𝑛
. 

and hence on using arithmetic and geometric means inequality, we find 
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1

𝑚
∑  𝑛−1

𝑠=𝑛−𝑚  
𝑟𝑠

𝑎𝑠
≤ 1 −

1

𝑚
∑  𝑛−1

𝑠=𝑛−𝑚  
𝑤𝑠+1

𝑤𝑠

≤ 1 − [
𝑤𝑛

𝑤𝑛−𝑚
]

1

𝑚
.

                                         (2.6) 

setting 𝛾 =
𝑚𝑚

(𝑚+1)𝑚+1
 , 

from(1.1) we can choose a constant 𝛿 such that for n sufficiently large 

𝛾 < 𝛿 ≤ (
1

𝑚
) ∑𝑠=𝑛−𝑚

𝑛−1  
𝑟𝑠

𝑎𝑠
.  

Therefore, from (2.6) for all large n, 

[
𝑤𝑛

𝑤𝑛−𝑚
]

1

𝑚
≤ 1 − 𝛿, 

which in particular implies that 0 < 𝛿 < 1. 

Now since 

max
0≤𝜂≤1

  [(1 − 𝜂)𝜂
1

𝑚] = 𝛾
1

𝑚. 

we have 1 − 𝜂 ≤ 𝛾
1

m𝜂
−1

𝑚 for 0 < 𝜂 ≤ 1, 

and hence it follows that 

[
𝑤𝑛

𝑤𝑛−𝑚
]

1
𝑚

≤ 𝛾
1
𝑚𝛿

−1
m  

which is the same as 
𝛿

𝛾
𝑤𝑛 ≤ 𝑤𝑛−𝑚.                                                                           (2.7) 

Now using (2.7) instead of 𝑤𝑛 ≤ 𝑤𝑛−𝑚 in (1.1) and repeating the arguments, we find 

(
𝛿

𝛾
)

2

𝑤𝑛 ≤ 𝑤𝑛−𝑚 for all large 𝑛.                                                   (2.8) 

Thus, by induction, for every 𝑛 ∈ 𝑁(1) there exists an integer 𝑛𝑛 such that for all 𝑛 ∈ 𝑁(𝑛𝑛) 

(
𝛿

𝛾
)

𝑛

𝑤𝑛 ≤ 𝑤𝑛−𝑚.                                                                         (2.9) 

 

Next, for sufficiently large n, 

∑  𝑛
𝑠=𝑛−𝑚

𝑟𝑠

𝑎𝑠
≥ ∑  𝑛−1

𝑠=𝑛−𝑚
𝑟𝑠

𝑎𝑠
≥ 𝑚𝛿 = 𝑀.                                           (2.10) 

say, since 𝛿 > 𝛾, 

we can choose n such that 

(
𝛿

𝛾
)

𝑛

> (
2

𝑀
)

2

         .                                                                 (2.11) 

For this specific value of n, we consider n sufficiently large, say 𝑛∗ so that for all 𝑛 ≥ 𝑛∗, all the above 

inequalities are satisfied. 

Then, for each 𝑛 ≥ 𝑛∗ + 𝑚 there exists an integer 𝑛̂ with 𝑛 − 𝑚 ≤ 𝑛̂ ≤ 𝑛 so that 

∑  

𝑛̂

𝑠=𝑛−𝑚

𝑟𝑠

𝑎𝑠
≥ (

𝑀

2
)  and ∑  

𝑛

𝑠=𝑛̂

𝑟𝑠

𝑎𝑠
≥ (

𝑀

2
). 

From (1.1) and the non-increasing nature of 𝑤𝑛, we have 
−𝑤𝑛−𝑚 ≤ 𝑤𝑛̂+1 − 𝑤𝑛−𝑚

= ∑  

𝑛̂

𝑠=𝑛−𝑚

 𝑤𝑠+1 − 𝑤𝑠

= − ∑  

𝑛̂

𝑠=𝑛−𝑚

 
𝑟𝑠

𝑎𝑠
𝑤𝑠−𝑚
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≤ − [ ∑  

𝑛̂

𝑠=𝑛−𝑚

 
𝑟𝑠

𝑎𝑠
] 𝑤𝑛̂−𝑚

≤ −
𝑀

2
𝑤𝑛̂−𝑚

 

 

and hence 
𝑀

2
(𝑤𝑛̂−𝑚) ≤ 𝑤𝑛−𝑚.                                                          (2.12) 

 

Similarly, we find 
−𝑤𝑛̂ ≤ 𝑤𝑛+1 − 𝑤𝑛̂

= ∑  

𝑛

𝑠=𝑛̂

  ((𝑤𝑠+1) − 𝑤𝑠)

= − ∑  

𝑛

𝑠=𝑛̂

 
𝑟𝑠

𝑎𝑠
𝑤𝑛−𝑚

≤ − [∑  

𝑛

𝑠=𝑛̂

 
𝑟𝑠

𝑎𝑠
] 𝑤𝑠−𝑚

≤ −
𝑀

2
𝑤𝑛−𝑚

 

and so 
𝑀

2
𝑤𝑛−𝑚 ≤ 𝑤𝑛̂ .                                                          (2.13) 

Combining (2.9),(2.12)and (2.13), we get 

(
𝛿

𝛾
)

𝑛

≤
𝑤𝑛̂−𝑚

𝑤𝑛̂
≤ (

2

𝑀
)

2

 .                                             (2.14) 

 

But this contradicts (2.11) and the proof is complete. 

3.  EXAMPLE 

Example 3.1.Consider the first order delay difference equation 

Δ(𝑛𝑤𝑛) + (2𝑛 + 1)𝑤𝑛−2 = 0                                                             (3.1) 

Here 𝑎𝑛 = 𝑛, 𝑟𝑛 = 2𝑛 + 1. 

All conditions of Theorem(2.3) are satisfied. 

Hence all solution of equation (3.1) are oscillatory. 

In fact, 𝑤𝑛 = (−1)𝑛 is one such solution of equation(3.1). 

Example 3.2. Consider the first order delay difference equation 

Δ (
1

𝑛
) + (2𝑛 + 1)𝑤𝑛−2 = 0                                                                 (3.2) 

Here 𝑎𝑛 =
1

𝑛
, 𝑟𝑛 = 2𝑛 + 1. 

All conditions of Theorem(2.3) are satisfied. 

Hence all solution of equation (3.2) are oscillatory. 

In fact, 𝑤𝑛 = (−1)𝑛 is one such solution of equation (3.2). 

 

4. Conclusion 

In this paper, the oscillatory behaviour of first order delay difference equation of the form(1.1) has 

been studied and established some sufficient condition for oscillatory behavior of (1.1).Various 

example are considered to illustrate the main results. 
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